Search results for "inductive limit"
showing 4 items of 4 documents
Bounded elements of C*-inductive locally convex spaces
2013
The notion of bounded element of C*-inductive locally convex spaces (or C*-inductive partial *-algebras) is introduced and discussed in two ways: The first one takes into account the inductive structure provided by certain families of C*-algebras; the second one is linked to the natural order of these spaces. A particular attention is devoted to the relevant instance provided by the space of continuous linear maps acting in a rigged Hilbert space.
Some results about operators in nested Hilbert spaces
2005
With the use of interpolation methods we obtain some results about the domain of an operator acting on the nested Hilbert space {ℋf}f∈∑ generated by a self-adjoint operatorA and some estimates of the norms of its representatives. Some consequences in the particular case of the scale of Hilbert spaces are discussed.
MR2481817 (2010e:46040): Haluška, Ján; Hutník, Ondrej On vector integral inequalities. Mediterr. J. Math. 6 (2009), no. 1, 105–124. (Reviewer: Luisa …
2009
I. Dobrakov in his papers [Czechoslovak Math. J. 40(115) (1990), no. 1, 8--24; MR1032359 (90k:46097); Czechoslovak Math. J. 40(115) (1990), no. 3, 424--440; MR1065022 (91g:46052)] developed a theory for integrating vector-valued functions with respect to operator-valued measures: Let X and Y be two Banach spaces, Δ be a δ-ring of subsets of a nonempty set T, L(X,Y) be the space of all continuous operators L:X→Y, and m:Δ→L(X,Y) be an operator-valued measure σ-additive in the strong operator topology of L(X,Y). A measurable function f:T→X is said to be integrable in the sense of Dobrakov if there exists a sequence of simple functions fn:T→X, n∈N, converging m-a.e. to f and the integrals ∫.fnd…