Search results for "inductive limit"

showing 4 items of 4 documents

Bounded elements of C*-inductive locally convex spaces

2013

The notion of bounded element of C*-inductive locally convex spaces (or C*-inductive partial *-algebras) is introduced and discussed in two ways: The first one takes into account the inductive structure provided by certain families of C*-algebras; the second one is linked to the natural order of these spaces. A particular attention is devoted to the relevant instance provided by the space of continuous linear maps acting in a rigged Hilbert space.

Discrete mathematicsPositive elementApplied Mathematics010102 general mathematicsMathematics - Operator AlgebrasRigged Hilbert spaceMathematics - Rings and AlgebrasLF-spaceSpace (mathematics)01 natural sciencesOperator spaceBounded operatorBounded elements Inductive limit of C*-algebras Partial *-algebras010101 applied mathematics47L60 47L40Rings and Algebras (math.RA)Bounded functionLocally convex topological vector spaceFOS: Mathematics0101 mathematicsOperator Algebras (math.OA)Mathematics
researchProduct

Some results about operators in nested Hilbert spaces

2005

With the use of interpolation methods we obtain some results about the domain of an operator acting on the nested Hilbert space {ℋf}f∈∑ generated by a self-adjoint operatorA and some estimates of the norms of its representatives. Some consequences in the particular case of the scale of Hilbert spaces are discussed.

Operator AlgebraPure mathematicsHilbert manifoldProjective LimitNuclear operatorHilbert R-treeGeneral MathematicsMathematical analysisHilbert's fourteenth problemHilbert spaceHilbert SpaceRigged Hilbert spaceCompact operator on Hilbert spaceInductive Limitsymbols.namesakesymbolsProduct SpaceReproducing kernel Hilbert spaceMathematicsRendiconti del Circolo Matematico di Palermo
researchProduct

MR2481817 (2010e:46040): Haluška, Ján; Hutník, Ondrej On vector integral inequalities. Mediterr. J. Math. 6 (2009), no. 1, 105–124. (Reviewer: Luisa …

2009

I. Dobrakov in his papers [Czechoslovak Math. J. 40(115) (1990), no. 1, 8--24; MR1032359 (90k:46097); Czechoslovak Math. J. 40(115) (1990), no. 3, 424--440; MR1065022 (91g:46052)] developed a theory for integrating vector-valued functions with respect to operator-valued measures: Let X and Y be two Banach spaces, Δ be a δ-ring of subsets of a nonempty set T, L(X,Y) be the space of all continuous operators L:X→Y, and m:Δ→L(X,Y) be an operator-valued measure σ-additive in the strong operator topology of L(X,Y). A measurable function f:T→X is said to be integrable in the sense of Dobrakov if there exists a sequence of simple functions fn:T→X, n∈N, converging m-a.e. to f and the integrals ∫.fnd…

bornologyvector functionDobrakov integralintegral inequalityInductive limit of Banach space
researchProduct

Quasi *-algebras and generalized inductive limits of C*-algebras

2011

inductive limitJordan algebraGeneral MathematicsSubalgebraCurrent algebraUniversal enveloping algebraFiltered algebraAlgebraC*-algebrasSettore MAT/05 - Analisi MatematicaQuasi *-algebraAlgebra representationDivision algebraCellular algebraMathematics
researchProduct